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uses the point values defined within single cell at equally spaced points as the model vari-
ables (or unknowns). The time evolution equations used to update the unknowns are
derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the
cell-averaged value and the point-wise value of the state variable and its derivatives.
The finite volume constraint on the cell-average guarantees the numerical conservative-
ness of the method. Most constraint conditions are imposed on the cell boundaries, where
the numerical flux and its derivatives are solved as general Riemann problems. A multi-
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Multi-moment moment constrained Lagrange interpolation reconstruction for the demanded order of
Hyperbolic conservation laws accuracy is constructed over single cell and converts the evolution equations of the
Compact stencil moments to those of the unknowns. The presented method provides a general framework
Local reconstruction to construct efficient schemes of high orders. The basic formulations for hyperbolic conser-

vation laws in 1- and 2D structured grids are detailed with the numerical results of widely
used benchmark tests.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

High-order schemes with local reconstructions use compact stencil for spatial discretization, and appear more attractive
in flexibility and efficiency to locally refine the numerical solutions. Examples of the numerical algorithms that are conser-
vative and make use of the locally defined degrees of freedom (DOFs) for high order reconstructions are the discontinuous
Galerkin (DG) method [4-7], the spectral volume (SV) method [29-32] and, more recently the spectral difference (SD)
method [17,33].

The DG method is a formulation based on the Galerkin finite element approach. The local degrees of freedom is increased
by a high-order local discontinuous basis function constructed piecewisely over each mesh cell, and the Riemann problem is
solved at cell boundaries by a class of numerical methods originally developed in the context of the finite difference or finite
volume approaches. The cell-averaged value is then cast into a complete flux-form formulation to assure the conservation in
the DG method. The local DOF in the SV method is increased by partitioning the control volume (or mesh cell) further into
finer subdomains with geometrical regularity. The cell-averaged values for these subdomains are then updated as the new
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unknowns. With the new DOFs defined on the regular decomposition in each mesh cell, high-order scheme can be
constructed on a local base. The SV method essentially applies the finite volume formulation to all DOFs, so the numerical
conservation for the unknowns is maintained.

Being more computationally efficient, the spectral difference (SD) method has been recently extended to unstructured
grids [17,33]. The SD method originated from the conservative staggered-grid Chebyshev multi-domain method [14],
where the unknowns of the state variable are defined at the Gauss points while the numerical fluxes are defined at the
Gauss-Lobatto points within each mesh cell. Cell-wise Lagrange interpolating polynomials are constructed separately
for the variable values and the flux values. The variable values at the Gauss points are interpolated to the Gauss-Lobatto
points where the numerical fluxes are computed. The spatial derivative of the flux at the Gauss points is then computed
by differentiating the flux interpolation function. Finally, the ordinary time evolution equation for the state variable is ob-
tained by requiring the residual of the spatial discretization to be zero at the Gauss point. In the SD method, all unknowns
are defined as the point values at the internal points within the mesh cell with the optimized locations. The numerical
conservativeness can be enforced by combining the flux differencing at the internal point so as to balance the effective
numerical flux across the cell surface. The SD is a point-based method, and is easily implemented on both structure
and unstructured grids.

In a series of multi-moment schemes, developed from the underlying idea of the Constrained Interpolation Profile (CIP)
method [43,45], more than one kind of moments are used as the model variables and individually updated by the governing
equations that may have different forms but should be consistent to the original conservation law. For example, several con-
servative schemes, so-called the CIP-Conservative Semi-Lagrangian (CIP-CSL) methods for the scalar conservation law
[26,44,35,36,10], can be constructed by including extra moments, such as the point value and the derivatives, in addition
to the cell-averaged value. The point value and the derivatives that are defined at the cell surface are predicted by a
semi-Lagrangian approach, while the cell average is updated by a finite volume formulation. For fluid dynamics, a class of
so-called CIP/multi-moment finite volume method (CIP/MM FVM) have been devised by making use of the Volume-Inte-
grated Average (VIA), Surface-Integrated Average(SIA) and Point Value(PV) as the model variables that must be memorized
and predicted forward in time. In the CIP/MM FVM variants, the VIA moment is updated by a finite volume formulation of
flux-form and is thus numerically conserved. A great flexibility is provided while predicting other moments. The multi-mo-
ment finite volume method as a general framework for fluid dynamic simulations has been so far implemented to various
fluid flows, for example multi-fluid flows [37,38,40], compressible and incompressible flows [39,41,11] and geophysical
flows [2,15,3].

For high-order schemes based on the multi-moments, we proposed in our previous paper [11] an accurate CIP/MM FVM
using a characteristic semi-Lagrangian approach for both scalar and Euler conservation laws. A more general formulation
that employs more derivative moments for arbitrary accuracy and uses the local derivative Riemann problems (DRP)
[28,27] in the Eulerian representation is also proposed [42]. Another recent variant is found as the conservative interpolated
differential operator method [12].

This paper presents a new high-order conservative scheme with more computational efficiency. Different from the exist-
ing methods, the new method, namely the multi-moment constrained finite volume (MCV) method, uses the point values
defined within single cell at equally spaced points as the model variables (or unknowns). Instead of being directly treated
as the model variables, the multi-moments are used to provide the constraint conditions that lead to the evolution equations
to update the unknowns. The MCV method has exact conservation for the cell-averaged value, and high-order MCV schemes
can be straightforwardly devised following a simple principle.

The basic idea and formulation of the MCV method are detailed in this paper. The rest of the paper is organized as follows:
Section 2 describes the basic numerical formulation with the schemes from third- to sixth-orders illustrated in detail. The
extension to 2D Cartesian coordinate grid is given in Section 3. Numerical tests are shown in Section 4, we have examined
the numerical convergence rate by grid refinement tests for the presented schemes from third- to sixth-orders. Some widely
used benchmark tests for both scalar and Euler conservation laws in 1D and 2D are also given to verify the numerical
schemes. Finally, we end this paper with a short summary in Section 5.

2. Basic formulation for one dimension

Different from the multi-moment methods developed so far where the moments are directly treated as the model vari-
ables that need to be predicted at every time step, values at the points collocated within each mesh element are treated as
the basic model variables in the present method. The evolution equations derived for different moments are employed as the
constraints that yield the relations to update the unknowns at the collocating points within each cell.

We consider the 1D hyperbolic conservation laws as follows,

q: +f(q@), =0, (2.1)

where q is the vector of the conservative variables and f{(q) is the vector of the flux function.

The computational domain is divided into non-overlapping cells, 6x; € [x;_1/2, Xi+12] (i=1,...,N), where X;.1/> is the cell
boundary. We define the moments, i.e. the cell-averaged value, the point-wise value and the derivatives of the field variable
q(x.t) as,
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(22)

where Ax; = X112 — X;_12 is the volume for cell i, and x;, represents a point within or at the boundary of cell i. We will denote
q)[g]p by g, and q,[(lil]) by gy ip as a convention in this paper.
From (2.1), we have the evolution equations for different moments of physical field q(x,t) as,

g 1 .

a = an Ui =f) 23
dg® R :
Db et with k=012, K,

where f and f¥ are the numerical formulations consistent to the flux function f(g) and its derivatives o*f(q).

The unknowns, or the degrees of freedom (DOFs), which should be predicted at every time step in the MCV scheme are
the point values (PVs), or the PV moments in our context, defined within each single cell shown in Fig. 1. The cell-wise inter-
polation reconstruction is then locally built in terms of the unknowns. For example, in a 1D Lth-order scheme, (L — 1)th-or-
der polynomial P;(x) on cell i requires L PVs (qy;l=1,2...,L), we write the interpolation polynomial in terms of the unknowns
as,

L
Pix) = > s, (2.4)
=1

where c;(x) is the basis function. The points x; for defining the unknowns g; are not necessarily coincided with x;, where the
constraints in terms of the evolution equations for different moments are imposed.

It should be addressed that construction of (2.4) is essentially different from the conventional Lagrange interpolation
though they share the same form. The values at the interior points are determined from the multi-moment constraints, thus
we call it multi-moment constrained (MC) Lagrange polynomial. See the appendix of this paper for more details.

Given interpolation function (2.4), the constraints on different moments (2.3) are explicitly expressed in the unknowns,
yielding a set of evolution equations to predict the unknowns,

dg 1 d id 1 & [dgy [ 1 7
dr - Ax dt (/x P,(X)dx) ~Ax Z (E /x cu(x)dx | = TAx (fi+% _fif%)7 (2.53)

il =1 1
2 2

dq[’f] d [ & L (dg, o o
d;"’za w7>,-(xi,,) =y T;Wci,(xip) =o' k=0,1,2,--- K. (2.5b)

=1

Eq. (2.5a) guarantees the exact conservativeness of the cell-integrated average value ;.

The reconstruction in an MCV method is built over each mesh cell, so the cell-wise interpolation function is continuous
within each cell, but might be discontinuous across cell boundaries. Depending on the location of x;,, the numerical formu-
lations for the derivatives of the flux function in (2.5b) are computed in different ways.

Being one of the important features of the current method, we use the constraint conditions (2.5b) at cell boundaries (x;_1;
2> and x;.1,2) to a largest possible extent.

When point x;, is at cell boundary, the numerical flux needs to be evaluated by solving the Riemann problem. At a bound-
ary point, the cell-wise reconstructions may lead to discontinuous values on the left and right sides of x;,, denoted by g~ and
q", respectively. The numerical fluxes are then computed by

fi» = Riemann(f(q;,).f(q5)),

L ; I K- flid [k+ (2:6)
fxip = Rlemann(f)£<](qi;;7 q;ipv e 7qxip )fx[ ](q;;n q;ripv AR qxip )),

where “Riemann(,,-)” denotes a Riemann solver with the left-side and right-side values given from the reconstructions.

In practice, we make use of the approximate Riemann solvers for computational efficiency. Two simplest examples among
many existing approximate Riemann solvers are the local Lax-Friedrich (LLF) flux and the Roe’s flux [19]. Computational cost
can be further reduced if we replace the high-order derivative Riemann problems by linear and homogeneous derivative Rie-
mann problems as detailed in [28,27] for the hyperbolic systems. As addressed in [28], since the first-instant plays a leading
role in the interaction of the two states, the derivative Riemann problems with these simplifications provide a reasonable

™ d b d L d
Lt 9 Lt 9 L 9

Fig. 1. The locations of the unknowns in one dimension for the third-order (left), the fourth-order (middle) and the fifth-order (right) schemes.
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accuracy. For the Euler equations in fact, our numerical experiments show that the following linearization to the flux func-
tions gives adequate accuracy in terms of both numerical errors and convergence rate

f=Aq, fi=Aq..... f¥=Adf, (2.7)

where A is the Jacobian matrix obtained by A = 9f/9q. Provided the derivatives of the state variable g from the cell-wise recon-
structions for both sides of a discontinuity, one can find the derivative flux of any high order at the expense of the conven-
tional Riemann problem.

It should be noted that the local reconstruction can be also carried out in terms of flux function fitself, instead of the con-
servative variables q. For example, the numerical approximations for flux function f and its derivatives at cell boundary x;,
can be calculated by

7 = L 15— RplaglRy (0 — a3 )) =3 (R 5~ Rysen(ApRy (15 ). 28
where we make use of the relation: g =A~!f= (RAR!)"!f=R A~'R"!f. The eigen matrices R and R!, as well as the eigen val-
ues in A are directly evaluated by the point values at x;,. Without the linearization (2.7), the numerical simulations using
(2.8) share a more uniform convergence rate for high order.

There are L unknowns in an Lth-order scheme, thus moment constraint conditions of equal number must be specified. We
only consider the cases of L >3 in this paper. When L is an odd number, we use one constraint on the cell-integrated average
(2.5a) and 2(K + 1) constraints on the point value and derivatives at the two ends of the cell, where K is determined by
K= (L — 3)/2. When L is an even number, however, an extra moment is required to provide another constraint condition.
We introduce the first-order derivative at the cell center (Xic = (X;_12 + Xi+1/2)/2), and write (2.5b) as

dq. _d (0 _ - dq;, 9 _ _fl2
o =t (awPim) = 3 (G o)) = 12 2

=1

fl2]

As shown in the following subsections, the second-order derivative of the flux function ;. in (2.9) is computed by an

approximation in terms of the flux from the interpolation reconstruction f,-c = f(Pi(xic)) as well as the flux and the derivatives
of the flux function at cell boundaries.

Provided all the values and the derivatives of the flux function, the semi-discretized system of (2.5a) and (2.5b) finally
yields the following ordinary differential equations in terms of the unknowns Q = [gi1,qi2,- - -,qiL],

dQ

a - RQ), (2.10)

where R(Q) stand for the approximations in terms of the discretized flux and the derivatives of the flux function. We use the
third-order TVD Runge-Kutta method [22],

Q1 = Qo + AtR(Qy),
3 1 1

Q = 7Q0 +7Q + 7ARQ), (2.11)
1 2 2

Q; = §Qo +§Q2 +§AtR(Q2)-

for time integration.
In the rest of this section, we give the examples of the MCV schemes from third- to sixth-orders.

2.1. Third-order MCV scheme

In the third-order scheme, the unknowns are three PVs (q;, [ = 1, 2, 3) at three equally spaced points within cell i as shown
in Fig. 1,

i (£) = q(Xir, ), g (6) = q(Xi2, 1), q3(L) = q(x33, 1), (212)

where X;1 =X;i_1/2, Xi2 = (Xi—1/2 * Xi+172)/2 and X;3 = X1 2.
A cell-wise MC-Lagrange polynomial,

3
Pix) = ca(®)du, (2.13)
=1

is then constructed. We impose constraint conditions on three moments, i.e. one cell-averaged value and two PVs at cell sur-
faces as
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_ / Pi(x)dx = (91 +44;, +q1'3)7
ox;

9 =3x 6
9y = PilXiy) = dn; (2.14)
q1+— - Pl( %) = qi3'
The evolution equations of the moments (2.5a) and (2.5b) then read,
d_ 1d 1 /; P
%" 6 E(Qn +4q;; +q3) = A (fw% _fif%)v
d _ dq“ A 2.15
aqi,l =dt fxl,b (2.15)
d dq
EQHZ 13 - fx1+2'
The constraint conditions (2.15) finally lead to the equations to directly update the unknowns as
d
qll _ fx,,L
d )
gf = *fxz +7 (fxx—l +fx1+ > (2.16)
dq N
dl"3 = 7fxi+%7

where fy; = (fm 52— f,;l ,2)/Ax; is the cell-averaged first-order derivative of the numerical flux. The numerical fluxes at cell
boundary, say x;_1,,, are obtained by solving the (derivative) Riemann problems,

fiy = Riemann (fi—;- (qiil) Jiy (Q,t%))) ;

2 2

. (2.17)
fxi 1 - Rlemann (f;a 1 (q_ 1 q;,%) 7.’;(!'7% (q:%’ q;—,,%) ) )
or more simply by the flux linearization (2.7)
f,-,% = Riemann (A;%q;l,Ait%qltl),
’ ’ (2.18)

£ - - +
fuio 1= Rlemann(Aif%qxif%,Aif%q;.f%).

The left-side and right-side values and derivatives of the state variables are computed from the cell-wise reconstructions

as
qii% = Pi—l(xi—%) ={qi-1)3>
_ 0 =3G;-11 + 412 — Qi)
Qi1 = 8XP' 1(%1) = Ax,,l . 2.19)
a7y = PilXiy) = dans
0, - ai Pitx,y) = Gir — 421;,+ 34

For cell boundary x;.1/2, the same procedure applies with the cell index shifted by one.
2.2. Fourth-order MCV scheme

In the fourth-order MCV, we put the four unknowns at equidistant positions over cell i as shown in Fig. 1,
4i (t) = q(xin, t),  qp(t) = qXn,t), qs(t) =qXis,t), () = q(Xia, 1), (2.20)

where X1 = Xi_12, Xi2 = (2Xi_1/2 + Xix1/2)[3, Xi3 = (Xi_1/2 + 2Xi+1,2)/3 and X4 = X;+1 2. As aforementioned, with L being an even num-
ber, a new constraint condition needs to be imposed on the first-order derivative at the cell center (xic = (X;_1/2 + Xi+1/2)/2), in
addition to the cell-averaged value and two PVs at both cell boundaries. A polynomial of four DOFs, P;(x) = St cu(x)qy, is
then derived. From (2.5a) and (2.5b), we get the following linear system,
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dql _ d (ql] +3(]12 +3qi3 +ql4) _f .
Xis

dt — dt 8
dqi—‘ dQH f
= ,l7
dt — dt X (2.21)
dqi+i dq,4
dt = dt fx1+2
Ay _ d (Gn =274 + 279 = i) _ o
dt dt 8AX; xie?
which then yield the evolution equations to update the PV unknowns as
dg; -
d_ll'] = _fxi—lv
dg; 4 1 /.2 P 4 P
2 =3 = (4.3 +5Fy) + ﬁAxJﬁf,-i, 22
dg; ’
dt3 le (Sfm—l + 4fx1+ ) Axlfxw
dq14 £
ar - -f xit+

The numerical fluxes at cell boundary are solved as the (derivative) Riemann problems in a similar way to that in the
third-order MCV scheme. The computation of the second-order derivative of the numerical flux at the cell center fm.

however, needs a_different procedure. In the present method, given five constraint conditions on flux, ie.
fie = f(Pixic)), fiys fiags fx]—l and fy.,, f2is evaluated from a fourth-order interpolation by

f)[czl]c _ ( 2fzc Zi: 1 +f,+ ) (fxi;AXifo;) . (2.23)

It is notified that the second-order derivative of the flux function at cell center (;c) is computed not only from the value
obtained from the interpolation reconstruction (f;.), but also from the numerical fluxes and the derivative fluxes at the cell
boundaries. It makes the current method substantially different from other existing algorithms.

2.3. Fifth-order MCV scheme

For the fifth-order MCV, the unknowns are the five PVs defined at the equidistant points,

(3x,l+x 1) (xfl+x 1) (x,l+3x )
= »7%, Xi27+7 Xi3 = l 2 H , Xig = l 4 ; XIS*XJrlv (224)

over cell i as shown in Fig. 1. The interpolation is constructed by an MC-Lagrange polynomial P;(x) = S>> ,ci(x)qy of 5 DOFs.
The constraint conditions are imposed on 5 moments, i.e. the cell-averaged value, the PVs and first-order derivatives at the
two cell boundaries. Using the interpolation polynomial P;(x), we get the following evolution equations for the PV unknowns
as,

dqi _ d (7q11 + 32q12 + 12q13 + 32(],4 + 7q15)

de  de 90 .
9y dgy _
— f 71

dt — dt ¥
dg; s dq;s R

d[’z = d_é = _fxi+%7 (2.25)
495y _ d (~25q, +484n — 3645 +164is —3ds) _ o

de dt 3Ax; A=
dqxi+% _ d (3gy — 16q;, +364;; — 48q;4s + 25¢;5) - _f®

dt dt 3Ax; Xt}

The numerical fluxes at cell boundaries, i.e. f&l /20 fx,»ﬂ 2 and ff,]ﬂ J20 €AN be evaluated by solving the derivative Riemann prob-
lems up to second-orders. After solving the linear system (2.25), the PV unknowns are updated in time.

2.4. Sixth-order MCV scheme
A sixth-order scheme requires six PVs located at the six points equally spaced over cell i to build a polynomial of six DOFs,

Pi(x) = Zlec,-,(x)qi,. In addition to the constraint conditions in fifth-order scheme, the first-order derivative moment at cell
center (x;.) is added to provide a new constraint. The evolution equations for the moments (2.5a) and (2.5b) read



S. Ii, F. Xiao/Journal of Computational Physics 228 (2009) 3669-3707 3675
Table 1
The maximum CFL numbers for computational stability of the MCV schemes in 1D scalar advection test.
Accuracy 3rd 4th 5th 6th
CFL number 0.4 0.25 0.2 0.14
dg; _ d (1995 + 75¢;, + 5045 + 5044 + 75¢;5 + 19q56) — fu
dt —dt 288 W
in—%:dq_“:_f‘ 1
dt dt Xy
dqi,y _dgi _ f
de ~dr ~ dab
(2.26)
dqx,;% _ d (=137g; +300q;, — 300q;; + 200g;, — 75¢;5 + 124;6) _ 7f[2]
dt dt 12Ax; xi-y!
dqxi+% _ d (=12g; +75q;, — 200q;; +300q;, — 300q;5 + 137¢;4) _ ﬂ;[z]
dt ~dt 12Ax; X}
dqyic _ d (=9qn +125q;, — 2250q;; + 225094 — 1255 +9Gis) _ _¢p
dt dt 384Ax; xic:
The equations for updating the PV unknowns, gji,...,qis, can be derived straightforwardly from the 6 x 6 linear system
(2.26).
L L*J e} 9
o g
m
2p o q
1 gr = a d
Fig. 2. The points over cell ij to define the unknowns.
Table 2
Numerical errors and convergence rate for the 1D linear scalar equation.
Accuracy Mesh L, error L, order L., error L., order
3rd 10 1.29E-2 - 2.00E-2 -
20 1.69E-3 293 2.64E-3 2.92
40 2.14E-4 2.98 3.36E-4 2.97
80 2.68E-5 3.00 4.22E-5 2.99
4th 10 2.06E-4 - 3.19E-4 -
20 1.31E-5 3.98 2.06E-5 3.95
40 8.32E-7 3.98 1.31E-6 3.98
80 5.25E-8 3.99 8.24E-8 3.99
5th 10 5.21E-5 - 8.05E-5 -
20 1.67E-6 4.96 2.61E-6 4.95
40 5.34E-8 497 8.38E-8 4.96
80 1.66E-9 5.01 2.61E-9 5.00
6th 10 4.06E—7 - 6.27E-7 -
20 6.46E—9 5.97 1.00E-8 5.97
40 9.95E-11 6.02 1.56E-10 6.00
80 1.53E-12 6.02 2.48E-12 5.98
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Fig. 3. Advection of a square wave after one period without limiting.

The second-order derivative of the numerical flux at cell center is evaluated from f,-c, f&] /2, fx,-ﬂ /2 and ff,]ﬂ 2 a8 follows,

P 3 : 2 2 fR)
2 12(—2fic +fiy +fi+%) . 9<fxi—% —fm%) +fxi—% i
xic — 8 '

2

AXIZ 4AX,‘

(2.27)

The numerical flux at the cell center are computed from the interpolation polynomial, fi. = f (Pi(xic)). All other flux or the
derivatives of the flux function are evaluated at the cell boundaries, thus should be computed from the Riemann solvers.

2.5. Some remarks

In the present MCV formulations, the points to define the unknown PVs are equally spaced. It is different from the Gauss-
Lobatto points used in the conservative staggered-grid Chebyshev multi-domain spectral method [14] or the SD method
[17,1], and the formula to convert (2.3) to the evolution equations for the PV unknowns, (2.5a) and (2.5b), are more efficient.
In the schemes from third-order to sixth-order, the only numerical flux computed from the interpolation function at the cell
center is fi in (2.23) and (2.27), while other flux or the derivatives of flux are evaluated at cell boundaries. We increase the
derivatives of flux at cell boundary when constructing higher schemes to provide constraints for the increased DOFs, rather
than use more fluxes at interior points as that in the Chebyshev multi-domain spectral method [14]. Our numerical tests
show that the MCV method has a satisfactory convergence rate for all schemes from third to sixth-orders presented in this
paper. Moreover, since there is not any volume integration involved in the present method, it is quite computationally
efficient.

As mentioned above, most of constraint conditions are imposed on the cell boundary as the Riemann and derivative
Riemann problems. It implies that the increase in the DOFs for higher order scheme directly leads to an increase of the
information exchanged across the cell boundary. Consequently, different from other existing schemes using local high-order
reconstruction, the current MCV method allows larger CFL number for computational stability. We have carried out numer-
ical experiments for 1D linear advection equation with smooth initial condition, and used the third-order Runge-Kutta
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Fig. 4. Numerical results of the 1D advection of a complex profile without limiter at t = 2.

scheme (2.11) for time integration. Table 1 gives the maximum CFL numbers for stability of the MCV schemes from third-
order to sixth-order.

Compared with the maximum stable CFL number for the DG scheme and the SV scheme of the same order as given in [29],
the MCV method has a less restrictive CFL condition for computational stability.

2.6. The initial condition

In the numerical experiments presented in this paper, special care must be paid to specify the initial values of the un-
knowns, i.e. the PVs located at the equally spaced points over each mesh cell. It is trivial if the initial profile is analytically
given everywhere. Otherwise the unknown point values must be provided from high-order interpolations or from the
“physical observations” that have been assimilated by a numerical model of equivalent accuracy.

As a typical case, we describe here the process to determine the initial unknowns for a mesh cell where a jump
discontinuity exists. Assuming a jump discontinuity exists in [x,-f%,xw%] and given the PVs at the cell boundaries, we decide
the initial conditions for the unknowns according to the following rules.

(i) The PVs at the boundaries of cell i are firstly specified as

iz = q(xii%v 0).

(ii) The cell-averaged value is approximated by the PVs at the cell boundaries by a simple algebraic average,

_ q(Xi—%7 O) + q(xi+%7 0)
qi= .
2

(iii) The derivatives at the cell boundaries are initially assumed to be zero,

(2] _
qxii%v qxii%’ = O
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Fig. 5. Comparison between the third-order MCV and sixth-order MCV schemes in the advection problem at t = 20 (after 10 periods).

(iv) When L is an even number, the derivative at the cell center is approximated by,

0
Qxic = &P(Xic)v

where P(x) is the polynomial of (L — 1) DOFs where the derivative at the cell center is not involved. We estimate gy; by
a central difference in terms of the PVs at the two ends in this paper for simplicity, which slightly degrades the accuracy in
the initial conditions, but only makes negligible difference in the numerical results.

From the above conditions (i)-(iv), the initial PV unknowns can be obtained by the multi-moment interpolation polyno-

mial P;(x) = S5, ca(X)qy.

exact
numerical

N . L1 Ll L 1
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Fig. 6. Numerical results of the 1D advection problem with TVB limiter (M = 200) at t = 2.



S. Ii, F. Xiao/Journal of Computational Physics 228 (2009) 3669-3707 3679

1.4
1.2

1.4

exact
numerical

exact
numerical 1.2

1
0.8
0.6
0.4
0.2

0

N . M - - N . - M- - L
02 -0.5 0 0.5 1 02 -0.5 0 0.5 1

X X
(a) third-order (b) fourth-order

1.4
1.2

1.4
exact

numerical

exact
numerical 1.2

0.8
0.6
0.4
0.2

N . M - - N . - M- L1 L
0'2-1 -0.5 0 0.5 1 02 -0.5 0 0.5 1

X X
(c) fifth-order (d) sixth-order

Fig. 7. Numerical results of the 1D advection problem with TVD limiter (M =0) at t = 2.
We give below the initial values of the PV unknowns for the MCV schemes from third-order to sixth-order.

Third-order:

4,1 (0) M1 07 q(x;.1,0)
q200) | =|1/2 1/2 oy | (2.28)
q43 (O) 0 1 q(XiJr%s 0)
1 L J
Fourth-order:
q:(0) [ 1 0 ]
4200 | _|2/3 1/3| (4 40) 7 (2.29)
q5(0) 1/32/3 |\ 4(xi1,0)
ia(0) L0 1]
Fifth-order:
41 (0) (1 0
i (0) 27/32 5/32 | /a0
q30) [ =] 1/2  1/2 x ’ 0) )’ (2.30)
7:4(0) 532 27/32 | \I%b
qi5(0) L O 1
Sixth-order
41 (0) o1 0
() 2608/3125 517/3125
qs(0) | | 188173125 1244/3125 | (q(Xi4,0) (231)
Gu(0) | — | 1244/3125 1881/3125 | \ q(x,.,3,0) ) :
qi5(0) 517/3125 2608/3125
i5(0) L 0 1
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Table 3
Numerical errors and convergence rate for u, + (u?/2), =0 at t = 0.5/7.
Accuracy Mesh L, error L, order L., error L., order
3rd 20 5.43E-4 - 2.83E-3 -
40 9.91E-5 245 6.79E—4 2.06
80 1.49E-5 2.73 1.34E-4 2.34
160 2.11E-6 2.82 3.55E-5 1.92
320 2.83E-7 2.90 8.82E-6 2.01
4th 20 2.49E-5 - 1.80E—4 -
40 1.41E-6 4.14 1.39E-5 3.69
80 7.86E—8 4.17 9.21E-7 3.92
160 4.57E-9 4.10 6.56E—8 3.81
320 3.17E-10 3.85 6.78E-9 3.27
5th 20 3.44E-6 - 2.77E-5 -
40 2.27E-7 3.92 2.98E-6 3.22
80 1.35E-8 4.07 1.84E-7 4.02
160 5.94E-10 4.51 8.38E-9 4.46
320 2.18E-11 4.77 4.28E-10 4.29
6th 20 9.12E-8 - 5.93E-7 -
40 1.59E-9 5.84 1.75E-8 5.08
80 4.56E-11 5.12 5.98E-10 4.87
160 6.50E-13 6.13 1.69E-11 5.15
320 1.58E-14 5.36 3.87E-13 5.45

2.7. Limiting projection

To eliminate the spurious numerical oscillation, we apply the slope-limiting operator AIl; proposed in [7] to the solutions
at each Runge-Kutta step. The slope-limiting operator AIl; is a linear approximation defined as

ATLPi(X) = Gi + @ui(X — Xic), (2.32)
where gy is the limited gradient. It is required that the limiting procedure satisfies
ATLP;(x)dx = Pi(x)dx = Ax;q; (2.33)
J 0x; Jox;

for the numerical conservativeness.
The limited gradient q,; is computed based on the TVD concept [9]. We apply the superbee limiter,

Gxi = maxmod (minmod (Aq,;%, ﬁAqH%) ,minmod (Aqi+%, ﬂAqF%) ) , (2.34)

where Agi_1/2 = qic — q(i-1)e AGis1/2 = q(i+1)c — Gic and f is a positive to control the gradient sharpness, and is set to 1.8-2.0 in
this paper.

1.6
1.2
0.8

0.4

(L LA L e e |

L LI L e |

r exact r exact
[ o numerical [ o numerical
04 04f
[ u] [ O
~ [ . P 1 P 1 N L P 1 P 1
0 8O 0.5 1 1.5 2 0 80 0.5 1 1.5 2
(a) third-order (b) fifth-order

Fig. 8. Numerical results for the nonlinear Burger’s equation at t = 1.5/ on a 40-cell mesh. The reference ("exact”) solution is computed 20,480-cell mesh
by a conventional second-order finite volume method. The TVB parameter is M = 200.
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Fig. 9. Numerical errors of the third- and fifth-order MCV schemes at t = 1.5/n. The TVB parameter M = 200.

The minmod and maxmod functions are given respectively as

. s min(|ai/,|az[), if s = sign(a;) = sign(az),
d = 2.
minmod(a:, az) {0, otherwise, (2.35)
and
maxmod(a;, @) {s max(|ail,|az[), if s = sign(a:) = sign(ay), (2.36)
0, otherwise.

As it is well-known that the TVD limiter might over-smooth the local extremes in the numerical solution, we introduce
also the TVB limiter [21]. We slightly modified the formulation to get a smooth transition between the limited and unlimited
regions,

Qn = (2.37)

qi, if | —qin +qul <MAXZ O (=i +90) (=910 + Daan) > 0,
AIT;Pi(xy), otherwise,

(I=1,...,L). The parameter M is a switching parameter, and is somewhat problem-dependent as in other high-order
schemes. As will be seen later in the numerical tests, the limiting procedure affects the local solutions depending on the
TVB parameter which needs to be specified in advance in the current formulation. It should be a common challenging issue

Table 4

Numerical errors and convergence rate for the 1D Euler equations.

Accuracy Mesh L, error L, order L., error L., order

3rd 10 2.59E-3 - 3.99E-3 -
20 3.38E-4 294 5.28E-4 2.92
40 4.28E-5 2.98 6.71E-5 2.98
80 5.37E-6 2.99 8.43E-6 2.99

4th 10 4.12E-5 - 6.37E-5 -
20 2.62E-6 3.98 4.12E-6 3.95
40 1.66E—7 3.98 2.61E-7 3.98
80 1.05E-8 3.98 1.65E-8 3.98

5th 10 1.04E-5 - 1.61E-5 -
20 3.35E-7 4.96 5.22E-7 4.95
40 1.06E-8 4.98 1.66E—8 4.97
80 3.39E-10 4.97 5.33E-10 4.96

6th 10 8.11E-8 - 1.25E-7 -
20 1.25E-9 6.02 1.98E-9 5.98
40 1.98E-11 5.98 3.09E-11 6.00

80 3.38E-13 5.87 6.01E-13 5.68
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Fig. 10. Numerical results of Sod’s problem at t = 0.2.

for all high-order schemes to maintain high order in smooth region while get rid of spurious oscillation at discontinuity.
Some schemes with the WENO idea [18] may probably provide a solution.

3. Extension to 2D Cartesian grid

In Cartesian grid, it is straightforward to extend the MCV method to multi-dimensions. Due to the regularity of the mesh,
we can directly implement the one-dimensional formulation to x and y directions, respectively.
We consider the 2D hyperbolic system,

q: +f(a), +g(q), =0, (3.1)

with f and g being the flux functions in x and y directions, respectively.
The unknown PVs are defined at the points shown in Fig. 2. For an Lth-order scheme, the unknowns over cell ij are gjjjm
defined at points (X, Yijm); [=1,...,L,m=1,...,L with

X1 (= Xi—12), X2, - - -, Xijl, - - Xiji (= Xis12)  and Yin(FYic12): Vi - > Yigmo - -5 Y (Z Yia2)
being equally spaced over [X;_1/2,Xi+1/2] and [yj_1/2,¥j+1,2], Tespectively.
The 1D scheme is then implemented over the line segments XX N Y, (M=1,...,L) in x direction and

Xj MYV, (I=1,...,L) iny direction separately.
We introduce the averaged values along line segment X X N Yy, in x direction by

—(x 1
qgjn%(t) EA—M/)Fq(x,yUm,t)dx (3.2)

0X;
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Fig. 11. Numerical results of Lax’s problem at t = 0.13 with TVB parameter M = 20.

and the point-wise value and derivatives at two ends of the line segment by

akq .
qg:]i(zm(t) = W (Xii%v.)/ijm7 t); with k= 0,1,2,--- K.

Along line segment X;; N y;;y;; in y direction, the moments are defined by
_ 1
W)= _— .
qijl (t) = ij \/5}’] Q(th% t)dy
and

qu’;l.g%),(r) = giy‘,f (X, Yjup £); with k=0,1,2,-- K.

The unknown PVs along X; X Ny, in x direction is defined by
Qi (6) = q(Xi1, Y, £); - With 1=0,1,2,-- L

and those along x;; N y;; ¥y, in y direction by
A (6) = 4%, Yy, £); - With m=0,1,2,- L.

We summarize the solution procedure of the 2D Lth-order MCV scheme as follows,

(i) Give the initial values for all PV moments over all cells,
Qijim(0) = q(X;it, Yijm, 0),  (I=1,...,L, m=1,...,L).

3683

(3.3)

(3.4)
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Fig. 12. Same as Fig. 11, but M = 100.

(ii) Construct 1D MC-Lagrange polynomial interpolation along each line in x and y directions. In x direction, the interpo-
lation function reads

L
Zq(jxl qulm (m:17"'7L)7 (38)

=1

where the basis function cm)(x) (I=1,...,L) only depends on x. In y direction, the interpolation function is

PR Zcum Qe (I=1,....L), (3.9)

and the basis function ¢ (y) (m =1,...,L) only depends on y.

ijm
(iii) The numerical formulations of the ﬂux and the derivatives of the flux function, f;_ 1/zjm,f;[<’§],1/2jm; (m=1,...,L) at cell

boundary x; 1/, are evaluated by,

f iym = Riemann (fi—;im <QF_%,-m> Jigim (qlt;,m)) 7

f ym = Rmmann(fx,,z,m( qi_gjm» qm,j,m> fx,fzjm< 0y Gy 2,,,,)) 510

£lk] k] - - k] + +
fxi—%j = Riemann <fx1 4im <q ~Ljm> qxi—— LA qxx—i)m) f;ci—%im (qi—%}'m7 qxi—%jm’ e 7qx17§]m))
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Fig. 13. The cells where limiting is applied. TVB parameter is M = 20.
where the left-side and right-side values at the cell boundary are computed by
k
k- _ 9
q, 2} P; Um( )’ RN} qxi—;jm - axk P; ]jm(xi—%)v
K
_ g+ )
qt—zlm - ( lf-) T qxi—%jm Oxk PUm(Xi*%)’
(m:l,...,L).
Analogously, the same procedure applies in the y direction at cell boundary y; 1, for g,-,-,1/2,,g;k,}4/2,; (1= L) as
gijf%l = Riemann <gij7%l (qi;,%l) »8ij-1l (CI,-] 2,))
vy = Riemann (gyij,%z <qg,%[7q;ij,%[>vgyij—%l (CIU wqy,]_l,)), (3.11)

&Kl k] - - k]
8yij4 = Rlemann<gyij ll(qiif%”qyf'*%” o yrﬁ”)’g
where
) w0 o
q,‘j_%l = ,Pijfll(yj—%)v [RER} qyij—%l = aT/kijf]l(yjf%)a

[k]+

_ pW) _
q;l%l - ’PU}; (y,%), BN qyijf%, = aiykpijl

(I=1,...,L).

o (y'—l)7

[k]+

)

yiji—31 (qij—il’ qyt LA q
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Fig. 14. Same as Fig. 13, but M = 100.

(iv) If L is an even number, the first-order derivatives in respect to x and y at the center points of line segments
X XL N Yim, (M=1,...,L)and x5 Ny ¥y, (I=1,...,L) need to be evaluated as the constraint conditions, which then
requires the second-order derivatives of the flux functions. We use formulations in 1D, such as (2.23) and (2.27), and

compute the second-order derivatives of the flux functions by
f)[czi]cjcm :T<fiCiCm7fii%jmvfxii%jm7"') (m: 17"'7L)a (3 12)
g)[,zl]qd = T(gicjdvgiji%lvgyiji%lv .. ) (l = 17 .. 7L)

where 7 denotes the numerical approximation to the second-order derivative in terms of the center point value, the
flux and the derivatives of the flux at the cell boundary.
(v) From (2.5a) and (2.5b), the time evaluation equations in x direction for different moments are written as

dﬁ,(;f:, _fi+%im _fi—;jm

dt AX,‘ ’
9ty (3.13)
Xitym  ak41] N .
o= Tugm k=0...K,
dq)(:gjcm _

2]
e~ 7f xicjcm?
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Fig. 15. Numerical results of the shock-turbulence interaction with M =500 at t = 1.8.
form=1,...,L, and those in y direction read
dqy) &y &y
dt Ay;
q[k](y)
Vil k) k=0 K (3.14)
dt - yiji%l’ - ’* kl kl
)
ddieiq )
dt ~ Syicjcl?
forl=1,...,L.
(vi) The evolution equations for the x and y compo